您的位置首页百科问答

「卡方分布」是什么?

「卡方分布」是什么?

的有关信息介绍如下:

卡方分布(英语:chi-square distribution[2], χ²-distribution,或写作χ²分布)是概率论与统计学中常用的一种概率分布。k个独立的标准正态分布变量的平方和服从自由度为k的卡方分布。

卡方分布是一种特殊的伽玛分布,是统计推断中应用最为广泛的概率分布之一,例如假设检验和置信区间的计算。

卡方分布在共同使用卡方检验用于拟合优度的观测分布为理论之一,独立的分类的两个标准定性数据,并在用于人口区间估计标准偏差a的来自样本标准差的正态分布。许多其他统计检验也使用这种分布,例如Friedman 的按秩方差分析。

由卡方分布延伸出来皮尔逊卡方检验常用于:

1、样本某性质的比例分布与总体理论分布的拟合优度(例如某行政机关男女比是否符合该机关所在城镇的男女比);

2、同一总体的两个随机变量是否独立(例如人的身高与交通违规的关联性);

3、二或多个总体同一属性的同素性检验(意大利面店和寿司店的营业额有没有差距)。(详见皮尔逊卡方检验)

「卡方分布」是什么?

计算方法

p-value = 1- p_CDF.

χ2越大,p-value越小,则可信度越高。通常用p=0.05作为阈值,即95%的可信度。

因此,由于适当自由度(df)的累积分布函数(CDF)给出了获得比该点更不极端的值的概率,因此从 1 中减去 CDF 值给出p值。低于所选显着性水平的低p值表示统计显着性,即有足够的证据拒绝零假设。显着性水平 0.05 通常用作显着和不显着结果之间的分界点。