函数定义域的求法
的有关信息介绍如下:函数的定义域一般有三种定义方法:
(1)自然定义域,若函数的对应关系有解析表达式来表示,则使解析式有意义的自变量的取值范围称为自然定义域。例如函数
要使函数解析式有意义,则
因此函数的自然定义域为
(2)函数有具体应用的实际背景。例如,函数v=f(t)表示速度与时间的关系,为使物理问题有意义,则时间
因此函数的定义域为
(3)人为定义的定义域。例如,在研究某个函数时,我们只关心函数的自变量x在[0,10]范围内的一段函数关系,因此定义函数的定义域为[0,10]。
扩展资料
求函数定义域的主要依据是:
(1)分式的分母不为零;
(2)偶次方根的被开方数大于等于零;
(3)对数的真数大于零;
(4)指数式、对数式的底数必须大于零且不等于1;
(5)实际问题中注意自变量的范围,比如大于0或者只能取整数等等。
参考资料来源:百度百科-定义域