ARMA和ARIMA的区别
的有关信息介绍如下:1、运用对象不同
AR,MA,ARMA都是运用于原始数据是平稳的时间序列。
ARIMA运用于原始数据差分后是平稳的时间序列。
2、时间序列不同
AR(自回归模型),AR ( p) ,p阶的自回归模型。
MA(移动平均模型),MA(q),q阶的移动平均模型。
ARIMA(差分自回归移动平均模型)。
3、平稳性差别
ARMA模型的平稳性要求y的均值、方差和自协方差都是与时间无关的、有限的常数。 可以证明,ARMA(p, q)模型的平稳性条件是方程()0Lφ=的解的模都大于1,可逆性条件是方程()0Lθ=的解的模都大于1。
ARMA模型只能处理平稳序列,因此对于平稳序列,可以直接建立AR、MA或者ARMA模型。但是,常见的时间序列一般都是非平稳的。必须通过差分后转化为平稳序列,才可以使用ARMA模型。
ARIMA模型 (autoregressive integrated moving average) 定义:如果非平稳时间序列yt经过k次差分后的平稳序列zt=△kyt服从ARMA(p, q)模型。
那么称原始序列yt服从ARIMA(p, k, q)模型。 也就是说,原始序列是I(k)序列,k次差分后是平稳序列I(0)。平稳序列I(0)服从ARMA模型,而非平稳序列I(k)服从ARIMA模型。
参考资料来源:百度百科-ARMA模型
参考资料来源:百度百科-ARIMA模型