您的位置首页生活百科

未来计算机的资料

未来计算机的资料

的有关信息介绍如下:

未来计算机的资料

子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。 量子计算机,早先由理乍得·费曼提出,一开始是从物理现象的模拟而来的。可发现当模拟量子现象时,因为庞大的希尔伯特空间而资料量也变得庞大。一个完好的模拟所需的运算时间则变得相当可观,甚至是不切实际的天文数字。理乍得·费曼当时就想到如果用量子系统所构成的计算机来模拟量子现象则运算时间可大幅度减少,从而量子计算机的概念诞生。 量子计算机,或推而广之——量子资讯科学,在1980年代多处于理论推导等等纸上谈兵状态。一直到1994年彼得·秀尔(Peter Shor)提出量子质因子分解算法后,因其对于现在通行于银行及网络等处的RSA加密算法可以破解而构成威胁之后,量子计算机变成了热门的话题,除了理论之外,也有不少学者着力于利用各种量子系统来实现量子计算机。 半导体靠控制积体电路来记录及运算资讯,量子电脑则希望控制原子或小分子的状态,记录和运算资讯。 20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。研究发现,能耗来源于计算过程中的不可逆操作。那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能力。既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个幺正变换来表示。早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的。 1994年,贝尔实验室的专家彼得·秀尔(Peter Shor)证明量子电脑能做出对数运算,而且速度远胜传统电脑。这是因为量子不像半导体只能记录0与1,可以同时表示多种状态。如果把半导体比成单一乐器,量子电脑就像交响乐团,一次运算可以处理多种不同状况,因此,一个40位元的量子电脑,就能解开1024位元电脑花上数十年解决的问题。 编辑本段量子计算机的基本概念 量子计算机,顾名思义,就是实现量子计算的机器。要说清楚量子计算,首先看经典计算。经典计算机从物理上可以被描述为对输入信号序列按一定算法进行变换的机器,其算法由计算机的内部逻辑电路来实现。经典计算机具有如下特点: 其输入态和输出态都是经典信号,用量子力学的语言来描述,也即是:其输入态和输出态都是某一力学量的本征态。如输入二进制序列0110110,用量子记号,即|0110110>。所有的输入态均相互正交。对经典计算机不可能输入如下叠加态:C1|0110110 >+ C2|1001001>。 经典计算机内部的每一步变换都演化为正交态,而一般的量子变换没有这个性质,因此,经典计算机中的变换(或计算)只对应一类特殊集。 相应于经典计算机的以上两个限制,量子计算机分别作了推广。量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统(称为量子比特(qubits)),量子计算机的变换(即量子计算)包括所有可能的么正变换。因此量子计算机的特点为: 量子计算机的输入态和输出态为一般的叠加态,其相互之间通常不正交; 量子计算机中的变换为所有可能的么正变换。得出输出态之后,量子计算机对输出态进行一定的测量,给出计算结果。 由此可见,量子计算对经典计算作了极大的扩充,经典计算是一类特殊的量子计算。量子计算最本质的特征为量子叠加性和量子相干性。量子计算机对每一个叠加分量实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算机的输出结果。这种计算称为量子并行计算。 无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干(也称“退相干”)。因此,要使量子计算成为现实,一个核心问题就是克服消相干。而量子编码是迄今发现的克服消相干最有效的方法。主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。 迄今为止,世界上还没有真正意义上的量子计算机。但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。现在还很难说哪一种方案更有前景,只是量子点方案和超导约瑟夫森结方案更适合集成化和小型化。将来也许现有的方案都派不上用场,最后脱颖而出的是一种全新的设计,而这种新设计又是以某种新材料为基础,就像半导体材料对于电子计算机一样。研究量子计算机的目的不是要用它来取代现有的计算机。量子计算机使计算的概念焕然一新,这是量子计算机与其他计算机如光计算机和生物计算机等的不同之处。量子计算机的作用远不止是解决一些经典计算机无法解决的问题。 量子计算机是通过量子分裂式、量子修补式来进行一系列的大规模高精确度的运算的。其浮点运算性能是普通家用电脑的CPU所无法比拟的,量子计算机大规模运算的方式其实就类似于普通电脑的批处理程序,其运算方式简单来说就是通过大量的量子分裂,再进行高速的量子修补,但是其精确度和速度也是普通电脑望尘莫及的,因此造价相当惊人。目前唯一一台量子计算机仍在微软的硅谷老家中,尚在试验阶段,离投入使用还会有一段时间。量子计算机当然不是给我们用来玩电子游戏的,因为这好比拿激光切割机去切纸,其主要用途是例如象测量星体精确坐标、快速计算不规则立体图形体积、精确控制机器人或人工智能等需要大规模、高精度的高速浮点运算的工作。在运行这一系列高难度运算的背后,是可怕的能量消耗、不怎么长的使用寿命和恐怖的热量。 假设1吨铀235通过核发电机1天能提供7000万瓦伏电量,但这些电量在短短的10天就会被消耗殆尽,这是最保守的估计;如果一台量子计算机一天工作4小时左右,那么它的寿命将只有可怜的2年,如果工作6小时以上,恐怕连1年都不行,这也是最保守的估计;假定量子计算机每小时有70摄氏度,那么2小时内机箱将达到200度,6小时恐怕散热装置都要被融化了,这还是最保守的估计! 又此看来,高能短命的量子计算机恐怕离我们的生活还将有一段漫长的距离,就让我们迎着未来的曙光拭目以待吧!~ 科学家发现,脱氧核糖核酸(DNA)有一种特性,能够携带生物体各种细胞拥有的大量基因物质。数学家、生物学家、化学家以及计算机专家从中得到启迪,目前正合作研制未来DNA计算机。这种DNA计算机的工作原理是以瞬间发生的化学反应为基础,通过和酶的相互作用,将反应过程进行分子编码,对问题以新的DNA编码形式加以解答。 1995年首次报道科学家用“编程”DNA链解数学难题取得突破。和普通的计算机相比,DNA计算机的优点是体积小,但存储的信息量却超过目前任何计算机。它用于存储信息的空间仅为普通计算机的几兆分之一。其信息可存储在数以兆计的DNA链中。DNA计算机只需几天时间就能完成迄今为止所有计算机曾进行过的任何运算。另外,它所耗费的能量仅为普通计算机的十亿分之一。 DNA计算机的功能之所以强大,就在于每个链本身就是一个微型处理器。科学家能够把10亿个链安排在1000克的水里,每个链都能各自独立进行计算。这意味着DNA计算机能同时“试用”巨大数量的可能的解决方案。而电子计算机对每个解决方案必须自始至终进行计算,直到试用下一个方案为止。 所以,电子计算机和DNA计算机是截然不同的。电子计算机一小时能进行许多次运算,但是一次只能进行一次指令运算。DNA计算机进行一次运算需要大约一小时,但是一次能进行10亿个指令计算。人脑的功能介于两者之间:一小时进行大约10万亿次指令运算。DNA计算机把二进制数翻译成遗传密码的片段,每个片段就是著名双螺旋的一个链。科学家们希望能把一切可能模式的DNA分解出来,并把它放在试管里,制造互补数字链,为解决更复杂的运算提供依据。 利用特定的DNA结构——DNA核酶可以构建各种DNA分子逻辑门,这为DNA计算机的发展奠定了基础。 DNA计算是计算机科学和分子生物学相结合而发展起来的新兴研究领域。 据中国科学院消息,中科院上海应用物理研究所的樊春海研究员与上海交通大学Bio-X中心的贺林院士、张治洲教授(现为天津科技大学教授)通过深入的学科交叉与合作,应用DNA核酶研制成功一类新型的“DNA逻辑门”,为发展DNA计算机奠定了基础。相关研究结果已发表在日前出版的著名化学杂志《德国应用化学》上。 由于DNA分子具有强大的并行运算和超高的存储能力,DNA计算将可能解决一些电子计算机难以完成的复杂问题,而且也可能在体内药物传输或遗传分析等领域发挥重要作用。虽然DNA计算未来潜力无穷,但是当前仍然有许多瓶颈技术和基础问题需要解决,其中基于DNA分子的逻辑门就是实现DNA计算的一个重要基础。 DNA核酶是一种通过体外进化筛选出来的具有特定酶活性的核酸结构,在该项研究中采用的是具有DNA水解酶活性的DNA核酶。这种具有锤头状结构的核酶可以在铜离子辅助下催化氧化并切割底物DNA。DNA逻辑门即是在这种DNA核酶结构基础上通过模块设计(modular design)研制出来的。输入信号通过特定的生物分子传感可以产生输出信号,从而实现“YES”、“NOT”等逻辑判断,并可以组合成复杂的三输入逻辑门“AND(A, NOT(B), NOT(C))”。“NOT”与“AND(A, NOT(B), NOT(C))”的组合是一套通用运算符号,因此,理论上图灵机的所有运算均可以通过其组合而实现。 该逻辑门系统的新特色在于排除以往DNA逻辑门设计中RNA核苷的参与,仅单纯应用DNA分子,从而避免了RNA核苷带来的系统不稳定性。相关研究结果已发表在3月出版的著名化学杂志《德国应用化学》上(Angew. Chem. Int. Ed., 2006, 45, 1759.)。