余子式和代数余子式是什么?
的有关信息介绍如下:余子式和代数余子式的概念如下:
在n阶行列式中,把所在的第i行与第j列划去后,所留下来的n-1阶行列式叫元的余子式。
在n阶行列式中,把元素a所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式。
余子式和代数余子式的区别
首先他们的指代是各不相同的,也就是行列式的阶如果越低的话就越容易计算,于是很自然的能够提出把高阶行列式转换为低阶行列式来计算;而代数余子式却指代的是n-1这类型的阶行列式。其次是他们的特点和用处都是不同的。
通常在数学所学的线性代数当中,一个矩阵A,它的余子式(同时又称之为余因式),就是指代将A的某些行以及某些列去掉了之后,所余留下的一些方阵的行列式。
而相应的方阵在一些情况下会被称之为余子阵。而另一种情况就是将方阵A的一行以及一列都去掉了之后,所得到的余子式,可以用来获得相应的一些代数余子式,后者这个代数余子式在计算方阵的行列式以及逆时会派上一些用场。